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I. INTRODUCTION 

Reactions of metals and fused salts are of interest for several 

reasons. A number of metals are prepared by metallothermic reduction 

of the metal oxide or halide by a more active metal. The free energy 

of the reaction governs the completeness of the reaction while from the 

enthalpy of the reaction an estimate of the adiabatic temperature rise 

may be calculated. The solubility of the reductant in the fused bath 

will affect the excess active metal needed and the solubility of the 

molten salt in the product will affect the purity of the product. In the 

preparation of metals by electrolysis of a fused salt, the free energy 

of formation of the metal salt gives the minimum voltage at which the 

electrolysis cell can operate. The solubility of the metal in the electro­

lyte is a major factor governing the current efficiency of the cell while 

the solubility of the electrolyte in the metal will affect the purity of the 

product. 

It is possible to obtain thermodynamic data from a study of the 

reactions of metals with fused salts. For a reaction such as: 

A + BC \ x B + AC (equation 1) 

the equilibrium constant may be written as: 

K (equation 2) 
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where is the activity of substance i. Since at equilibrium the activity 

of a substance is equal in all coexisting phases, the activity of any sub­

stance may be measured or estimated in any of the phases. The stand­

ard free energy of the reaction is given by: 

4F° = - RT In K (equation 3) 

and the standard enthalpy of the reaction is given by: 

d In K _ 
dT m2 

(equation 4). 

Since ûH° is often approximately constant over a short temperature 

range, equation 4 may be integrated and rearranged to give: 

-RTiT ^ S  
-4 H° = (equation 5). 

T 1  " T 2  

By determining the equilibrium constant at two different temperatures, 

the enthalpy of the reaction may be evaluated. If the metals A and B 

form an ideal solution and the salts BC and AC also form an ideal 

solution and there is a negligible amount of metal dissolved in the salt 

and of salt dissolved in the metal, the activities may be replaced by 

mole fractions. The equilibrium will obey the ideal law of mass action 

and the equilibrium constant may be written as: 

NB X NAC 
K = M N? (equation 6) 

A 1NBC 
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where and are the mole fractions of A and B in the metal phase 

and and Ngç are the mole fractions of AC and BC in the salt 

phase. 

If there is an appreciable amount of metal dissolved in the salt 

or of salt dissolved in the metal, it is not possible to determine the 

concentrations of the individual chemical species in solution by chemi­

cal analysis. Only the total amount of A, B, and C in each phase can 

be determined. It is necessary to make an assumption in order to be 

able to calculate concentrations of the individual species as required 

for equation 6, The nature of the dissolved entity in solutions of a 

metal in a liquid halide salt is not definitely known. Excess metal 

atoms in solid ionic crystals have been studied extensively and many 

of their properties measured> These solid solutions are considered 

to consist of a normal cation lattice and an anion lattice containing 

vacancies which are occupied by the electrons from the excess metal. 

In this picture, the metal atom is separated into electrons and a metal 

ion in the solution process. Subsequently, the electron is not associated 

with any single metal ion. The extension of this concept to liquid salt 

solutions would seem to be reasonable. For a liquid salt consisting of 

two kinds of cations, the model becomes somewhat complex. To treat 

such a solution as being composed of a melt of two metal halide s with a 

certain amount of each metal in solution implies that these four chemi-
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cal species are distinguishable. Even through these species may not 

be distinguishable on an atomistic model, the postulatution may be 

useful in a thermodynamic description of the system. 

Instead of using the ideal law of mass action, van Laar and 

Lorenz (1) proposed an equilibrium law based on the use of van der 

Waal's equation to account for the concentration dependence of the 

activity coefficients in the metal and salt phases. This law contained 

two adjustable parameters which were related to the interaction forces 

between the several chemical species and which were evaluated, with 

the equilibrium constant, from values of the concentration quotient at 

three different concentrations. The law was applied to his data on the 

reaction of cadmium with lead chloride and of lead with stannous 

chloride. These reactions were carried out in glass tubes and cooled 

by an air quench. The equilibrium constant did not agree with values 

calculated from free energies of formation. Korber and Oelsen (2) 

have shown that the results of Lorenz on these systems can be explained 

by insufficient rapidity of the quench. 

There is also interest in the nature of these solutions of metals 

in a fused salt. Most early workers, in particular Guntz, proposed 

the formation of subhalides, Guntz and Benoit (3) measured the heat 

of solution of a mixture of calcium and calcium chloride that had 

been heated to 1000 °C and cooled. From these data, the heat of 
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formation of calcium monochloride was calculated. Bichowsky and 

Rossini (4) have shown that the Iieat of solution obtained for calcium 

monochloride is very close to the value calculated for a mixture of 

calcium metal and calcium chloride. In general, the existence of 

subhalides of alkalies and alkaline earths has not been confirmed. 

Lorenz studied a number of mixtures of metals in molten salts 

and proposed that the metals were colloidally dispersed in the fused 

salt. This work has been summarized in the book, "Pyrosole", by 

Lorenz and Eitel (5). Aten (6) found that cadmium lowered the melting 

point and decreased the specific conductivity of cadmium chloride 

indicating a true solution. Eitel and Lange (7) examined this molten 

mixture under an ultramicroscope and found no evidence for the exist­

ence of colloidal particles in the molten salt and observed no Tyndal 

effect. 

Cubicciotti (8) found the conductivity of solutions of calcium in 

calcium chloride at 850°C decreased as more calcium metal was added. 

Heymann (9) discusses the solution of cadmium in cadmium chloride 

and concluded that the cadmium dissolved as a solvated form: 

Cd + xCd+ + 5=^ Cd*xCd+ + . 

With x equal to unity, this proposal would be equivalent to a dimerized 

monochloride. 

The simplest method of presenting data showing the equilibrium 
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phase compositions of the metal and salt phases is as an isothermal 

section of a ternary phase diagram. A system composed of four 

chemical species which are related by a chemical reaction is a three 

component system. This follows from defining the number of compo­

nents as the minimum number of composition terms necessary for the 

complete statement of the composition of all phases in the system. 

For a reaction such as equation 1, an equilibrium constant may be 

written for each phase. Then, knowing the equilibrium constant and 

the activity coefficients, the concentration of one substance can be 

calculated if the others are known. This may be generalized as: 

c = s - r (equation 7) 

where c is the number of components, s is the number of chemical 

species, and r is the number of independent reactions. This type of 

system is known as a reciprocal or metathetical ternary phase system. 

The components may be taken as A, B, and C or as any three of the 

four species. The diagram is most conveniently plotted as a square 

figure with a pure specie at each corner and either temperature or 

pressure on the vertical axis, the other being held constant. The sides 

of the diagram are the respective binary systems. For a composition-

temperature diagram at constant pressure, the number of degrees of 

freedom (f) of the system is given by the phase rule: 

f = c - P + 1 (equation 8) 
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where P is the number of phases in equilibrium exclusive of the vapor 

phase and c is the number of components. For a ternary system, 

f = 4 - P (equation 9) 

Rinck (10) studied the equilibrium in the reaction of potassium 

with sodium hydroxide, sodium flouride, sodium chloride, sodium 

bromide and sodium iodide. Mixtures of the metals and salts were 

heated in sealed capsules of iron, quenched in cold water, and the salt 

and metal phases analyzed. The metal which was dissolved in the salt 

phase was removed by leaching with alcohol in the investigation of the 

potassium-sodium chloride system. For the other systems, the metal 

dissolved in the salt phase was determined by titrating the alkalinity 

with standard acid. The analysis of the salt phase was corrected for 

this dissolved metal by assuming that the ratio of sodium metal to 

potassium metal in the salt was equal to that in the metal phase. The 

magnitude of the solubility of the metal in the molten salt was not 

reported. With the exception of the potassium-sodium hydroxide system, 

the equilibrium constants did not vary with concentration and seem to 

obey the ideal law of mass action. The equilibrium constants agreed 

closely with values calculated from the free energies of formation of 

the metal halide s. The variation of the equilibrium constant with tem­

perature was less than experimental error except for the potassium-

sodium chloride system. Rinck fitted his data to Lorenz's equation 
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and obtained equilibrium constants which varied with concentration and 

did not agree with the values calculated from the free energies of 

formation. As a result, Rinck concluded that these systems did not 

follow the equilibrium law proposed by Lorenz. 

The reaction of calcium with strontium chloride has been 

studied by Ostertage (11). The experimental method which was used 

was similar to that used by Rinck (10) in studying the s odium-potassium; 

systems. Steel capsules were used to contain the reaction mixtures 

and after quenching in cold water, the salt and metal phases were ana­

lyzed. The equilibrium concentration quotient and calculated standard 

free energy of the reaction were found to vary with composition. When 

plotted against the atomic percent strontium in the metal phase, the 

values passed through a maximum at 10 atomic percent strontium. A 

plot of the atomic percent calcium dissolved in the salt phase verses 

atomic percent strontium in the metal phase also had a maximum at 

the same strontium concentration. By chemical analysis, it is only 

possible to determine the total amount of metal dissolved in the salt 

phase and not the individual species, and presumably it was the total 

metal dissolved in the salt that was reported. No correction of the 

equilibrium concentration quotient for this metal dissolved in the salt 

phase was mentioned. The equilibrium concentration quotient rose 

steeply from 4 x 10 ^ at one atomic percent strontium to 6. 5 x 10"^ at 



www.manaraa.com

9 

10 atomic percent strontium and then dropped linearly to 3 x 10 at 55 

atomic percent strontium. The values were averaged to give a concen­

tration quotient of 4.95 _ 2. 0 x 10 as compared to 3..82 x 10 calcu­

lated from the free energy of formation of the metal chlorides. 

Ostertage suggested that the variation of the equilibrium constant was 

due to the heat of solution of the metal in the salt and not to the heats 

of mixing of the salts or the metals. This suggestion was based on the 

similar variation of the equilibrium concentration quotient and the 

solubility of metal with the composition of the salt phase. 

Jellinek and Wolff (12) have investigated the reaction of barium 

dissolved in lead with calcium, chloride. A mixture of fused calcium 

chloride and barium chloride was electrolyzed with a lead cathode. 

From the analysis of the resulting salt and metal phases, the equilibrium 

constant was calculated for the reaction: 

Ba in lead + CaCla BaO^ + Ca in lead. 

An equilibrium constant of 1. 5 was obtained at 1000°C. The corre­

sponding free energy change is - 1. 03 k cal as compared with a value of 

about - 10 k cal calculated from the free energies of formation of calcium 

chloride and barium chloride. Some possible sources of error in this 

value of the equilibrium constant are as follows: (1) the assumption of 

ideal solution in the metal phase. Since both calcium and barium form 

a series of intermetallic compounds with lead, negative deviation from 
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Raoult's law is probable. If there is deviation for Raoult's law, the 

concentration quotient would be equal to the equilibrium constant only 

if the activity coefficient of calcium in lead is equal to the activity 

coefficient of barium in lead. (2) Since a current of 12 amperes 

was used for the electrolysis, large concentration gradients through 

the salt phase could have been produced. Also, polarization of the 

electrodes could have produced concentrations of calcium chloride and 

barium chloride in the immediate vicinity of the electrodes which were 

different from those in the bulk of the salt phase. If this was true, the 

salt composition in equilibrium with the metal was not the same as 

the composition of the salt phase found by analysis. (3) The salt and 

alloy mixture was not quenched and thus could change in composition 

as the various phases solidified. The poor agreement between the free 

energy of this reaction as measured by this equilibrium constant and 

the value calculated from other data indicates that the equilibrium con­

stant found by Jellinek and Wolff does not apply to the calcium-barium 

chloride equilibrium system. 

This investigation is concerned with the reaction of barium with 

calcium chloride. The experimental method used was similar to that 

used by Rinck (10) in studying the sodium-potassium systems. Stainless 

steel capsules were used to contain the reaction mixtures and after 

quenching in cold water, the salt and metal phases were analyzed. 
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Differential thermal analysis was used to locate the phase boundaries 

in the ternary system. The calcium-barium-barium chloride-calcium 

chloride ternary phase diagram was partially determined and isothermal 

sections at 900 °C and 950 °C are presented with some equilibrium con­

centration quotients. The experimental solubility of metal in the salt 

at various metal compositions is compared with solubilities calculated 

with various assumptions as to the solubility law governing this solu­

bility. 
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II. EXPERIMENTAL 

A. Materials 

1. Calcium chloride 

Calcium chloride was prepared by dehydrating Bakers analyzed 

hydrated calcium chloride. The dehydration was carried out by first 

heating the salt from 60° to 140 6 C in air over a period of about two 

days in a glass vessel. The calcium chloride was then transferred to 

a platinum boat and fused under dry hydrogen chloride by heating to 

850°C over a period of about 8 to 10 hours. The dry hydrogen chloride 

was prepared by mixing concentrated hydrochloric and sulfuric acids 

and was further purified by bubbling through a flask containing glass 

beads and concentrated sulfuric acid. The anhydrous calcium chloride 

was stored in a screw top bottle in a dry box. The hydrated calcium 

chloride was reported to be 99.95 percent pure. After dehydration, 

it contained less than 0.01 percent platinum from, the platinum boat 

and from 0 to 0. 006 percent calcium oxide as determined by titration 

with standard hydrochloric acid. The pure anhydrous calcium chloride 

melted at 770°C. A sample of calcium chloride which contained a 

small amount of water melted at 773°C. These values are compared 

with values reported by other investigators in Table 1. The liquid 
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calcium chloride supercooled as much as 60 °C during the cooling 

portion of the thermal analysis. However, after crystallization was 

initiated, the temperature increased to a constant value which was 

taken as the melting point. The same value for the melting point 

was obtained on both melting and freezing. Seeding the melt with 

crystals of calcium chloride or stirring to minimize supercooling 

was impractical since the thermal analysis capsules were sealed. 

Table 1. Melting point of calcium chloride 

Investigator Melting point 

This investigation 770a 

This investigation 773^ 
Neumann, et al. (13) 771 
Sandonnini (14) 772 
Schaefer, W. (15) 
Bukhalova and Bergman (16) 
Eastman, et al. (17) 
Sato and Amano (18) 
Ferrari and Inganni (19) 
Moore (20) 

773 
773 
773 
777 
780 
78 2C 

aFure anhydrous calcium chloride. 

kCalcium chloride containing a small amount of water. 

cReported for calcium chloride containing 0.6 percent 
magnesium chloride. 
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Table 2. Melting point and <V - jd? transformation temperature of 
barium chloride 

Investigator Transformation Melting point 

This investigation 926 962 
Ruff and Plato (21) 960 
Winter (22) 920 962 
Schaefer, W. (15) 960 
Sato (23) 927 963 
Sandonnini (14) 923 960 
Bukhulova and Bergman (16) 962 
Eastman, et al. (17) 920 960 

2. Barium chloride 

Anhydrous barium chloride was prepared by dehydrating 

Baker's analyzed hydrated barium chloride. The hydrated salt was 

heated from 60°C to 140°C over a period of about two days in air. 

It was then partially fused by heating in a platinum boat to between 

950°C and 1000°C in an atmosphere of dry hydrogen chloride. The 

anhydrous barium chloride was stored in a screw top bottle in the dry 

box. The hydrated salt wasr reported to be about 99. 85 percent barium 

chloride and contained about 0.1 percent total calcium and strontium. 

The final product was neutral to phenolphthalein and probably contained 

about 0.01 percent platinum from the platinum boat. The anhydrous 

barium chloride melted at 962 °C and the of - £ transformation occurred 
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at 926°C. These values are compared with values reported by other 

investigators in Table 2. The agreement in this case is very good. 

3. Calcium metal 

Calcium metal, which had been prepared by the alumino-

thermic reduction of calcium oxide, was obtained from the New England 

Lime Co., Canaan, Connecticut, and was distilled under vacuum using 

the method described by Smith, et al. (24). The redistilled calcium 

contained about 0. 002 percent aluminum, 0. 005 percent iron, 0.005 

percent nitrogen, 0. 003 percent manganese, and 0.03 percent magnesi­

um. Smith, et al., (24) estimated the oxygen content of this type 

calcium to be less than 0. 01 percent on the basis of the nitrogen analy­

sis. This calcium was obtained as rough lumps of massive metal 

about !•§ inches in diameter. These pieces were cut in air to the 

proper size for charging into the capsules and the surfaces cleaned 

with a file in a dry box filled with argon. This calcium melted at 836°C. 

This value is compared with values reported by other investigators in 

Table 3. 

4. Barium metal 

Impure cast barium sticks were purified by double distillation 

under reduced pressure. The distillation retort was a closed end 
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Table 3„ Melting point of calcium metal 

Inve stigator Melting point 

This investigation 836 
Hartmann and May (25) 810 
Eastman, et al. (17) 828 
Kubaschewski (26) 830 
Sheldon (27) 840 
Rinck (10) 848 
Antropoff and Falk (28) 851a 

Hoffmann and Schulze (29) 851^ 

aThese investigators found 848° but estimated the melting 
point of nitrogen free calcium metal to be 851 °. 

^These investigators found 849° but following the example 
of Antropoff and Falk (28) estimated 851°. 

cylinder of type 304 stainless steel. An air cooled cold finger con­

denser was bolted to the retort flange and was sealed with a rubber 

O-ring gasket. The retort had an inside diameter of 4 3/4 inches 

and was 18 inches long. About 10 inches of the retort extended into a 

modified Lindberg type CR-5 resistance furnace. The cold finger had 

an outside diameter of 3§ inches and was 12 inches long. The crude 

barium was placed in four trays made of type 405 stainless steel. 

These trays were one inch deep and stacked one on top of another in 

the retort. The top three trays had a two inch diameter hole in the 

center to permit barium vapor to flow up to the cold finger. A \ inch 
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Table 4. Barium metal analysis 

Nitrogen Carbon Iron Manganese 
ppm. ppm. ppm. ppm. 

Crude barium 430 500-800 53 50 
Single distilled 

barium 73 35 23 80 

rim around the hole prevented the molten barium from running out of 

the tray. The retort was loaded with about 700 grams of barium and 

heated to 500°C under a pressure of 25 microns of mercury. The 

system was filled with argon to a pressure of about 4 millimeters of 

mercury and was heated to about 900°C for 8 to 10 hours. The temper­

ature of the cold finger was about 200°C. After distillation, the retort 

was placed in an argon filled dry box and the barium crystals were 

removed from the cold finger with a chisel. The metal was placed in 

a screw top bottle and was stored in a dry box. The distilled barium 

was obtained as needlelike crystals about 2 millimeters in diameter 

and from 10 to 30 millimeters long. A residue of metal covered with 

a crust of crystalline barium oxide was left in the trays. A mixture of 

the crust and metal residue contained about 0.15 percent nitrogen. The 

analysis of the crude and single distilled barium is given in Table 4. 
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Table 5, Melting point of barium metal 

Investigator Melting point 

This investigation 
This investigation 
Hartman and May (25) 
Hoffman and Schulze (29) 
Rinck (10) 
Hirst, et al. (30) 
Eastman, et al. (17) 
Guntz (31) 

aCrude barium. 

^Double distilled barium. 

From these analyses and from qualitative spectrographic analyses, 

the total amount of silicon, magnesium, nickel, copper, aluminum, 

strontium, and calcium was estimated to be less than 160 parts per 

million. No oxygen or hydrogen analyses were available. Excluding 

oxygen and hydrogen, the metal would be about 99.96 percent pure 

barium metal. The crude barium melted at 7I7°C and the double 

distilled barium melted at 729°C. These values are compared with 

values reported by other investigators in Table 5. A sample of the 

double distilled barium metal to which was added 0.175 weight percent 

oxygen or 1.5 mole percent barium oxide melted between 650* and 613 °C 

717 
729b 

658 
704 
710 
714 
717 
850 
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with the liquidas occurring at 650°C and a eutectic type thermal arrest 

occurring at 613°C. Assuming that the liquidus is approximately 

linear in the region of pure barium, this corresponds to a lowering of 

45. 7*0 per 0.1 weight percent oxygen. An oxygen impurity of 0. 044 

percent would thus lower the melting point of barium metal to about 

710°C which is the usually accepted value. 

B. Methods 

1. Isothermal tie-lines 

a. Apparatus The tie-lines of the isothermal sections at 

900*C and 950°C were determined by equilibrating mixtures of the 

metals and salts at the operating temperature and quenching in cold 

water. The starting materials were mixtures of either calcium 

metal and barium chloride or barium metal and calcium chloride. 

The containers for these samples were made of type 304 stainless 

steel and are illustrated in Figure 1. The capsules were made from 

six inch sections of 7/16 inside diameter seamless tubing with a 0.035 

inch wall. These pieces of tubing were pickeled in a 50-50 mixture 

of concentrated nitric and hydrochloric acids, washed with distilled 

water and dried at 140 °C. One end of the tube was pinched flat and 

welded shut with an electric arc ^n a dry box filled with argon. After 
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STAINLESS 
STEEL 

METAL PHASE 

VOID 

SALT PHASE 

FLATTENED 
END 

WELD 

Figure 1. Sample capsule 
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the capsules were filled in the dry box, the other end was pinched flat 

and sealed by welding in the dry box. All weighing and loading 

operations were carried out in a dry box which was about 24 inches by 

12 inches by 6 inches high. This dry box could be evacuated to between 

20 and 30 microns of mercury and filled with argon. Linde argon, 

reported to be 99.99 percent pure, was used for filling the dry box 

except when barium metal was used as one of the starting materials. 

In this case, the argon was purified by passage over granular calcium 

at 450°C. The barium metal slowly discolored even after these pre­

cautions were taken. The apparatus for equilibrating the samples is 

shown in Figure 2. A Ho skins Type FH303A resistance furnace was 

used to heat the sample capsules. It was mounted on a frame so that 

it could be rotated through 180° to facilitate mixing of the two phases. 

One end of the furnace was closed with a three inch plug of K-30 fire 

brick. The other end was closed with a plug made from a fused silica 

tube which was three inches long and had an outside diameter of 1 5/16 

inches and a 5/16 inch wall. A thermocouple tube extended through 

the fused silica tube and the silica tube was filled with Sauereisen no. 

1500 refractory cement. The hot side of this cement was protected 

with an asbestos plug. A chromel-alumel thermocouple was used to 

measure the temperature. The sample capsule was wired to the thermo­

couple and could be removed froir^the furnace for quenching by using 
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Figure 2. Schematic drawing of sample furnace 



www.manaraa.com

23 

the thermocouple tube as a handle. The temperature of the furnace 

was controlled with a Brown Electronik circular scale recording 

potentiometer which actuated a Modutrol motor coupled to a Variac 

auto transformer. The temperature was constant within the furnace 

cavity to about ~t 3°C. The sample temperature was also measured 

with a Leeds and Northrop no. 8657C manual potentiometer. 

b. Operating procedure The materials charged into the 

equilibration tubes were carefully weighed so that the desired compo­

sition would be obtained. Samples of metal and salt were first weighed 

to 0.1 gram on a beam balance in the dry box and placed in screw top 

bottles. The bottles were removed from the dry box and weighed on 

an analytical balance to 0.1 milligram. The bottles were replaced in 

the dry box which was again evacuated and filled with argon. The 

metal and salt charges were transferred to the stainless steel capsules. 

The bottles were re weighed and the weight of the sample components 

obtained by difference. 

The capsules were welded shut, placed in the furance, and 

heated for about 3 hours. The furnace was rotated through 180° and 

shaken to mix the phases at intervals during the first two hours. The 

capsules were held in a vertical position for the last hour to permit 

phase separation. Some samples at 900°C were heated for 12 hours 

to determine whether equilibrium had been reached. The variation in 
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the analysis of the phases between the samples heated for 12 hours and 

those heated for 3 hours was less than the experimental error in the 

analytical methods. After the heating period, the capsules were re­

moved from the furnace and quenched in cold water. The time required 

to transfer the samples from the furnace to the water was about 2 

seconds. 

The stainless steel capsules were slotted on opposite sides 

with a dry silicon carbide cut-off wheel, the two ends of the capsules 

were cut off with a hack saw, and the capsules were loaded into the 

dry box. After the dry box was evacuated and filled with argon, the 

stainless steel capsule was peeled away with vise grip pliers and the 

salt and metal phases were separated and sampled. The salt phase 

varied in color from light brown to black and had a hollow solidification 

pipe extending down through the center. In some runs at 950°C, a 

small metal bead was found in the pipe which indicated that some phase 

separation occurred during the quench. Figure 1 shows the arrange­

ment of the phases in a quenched capsule. In binary samples of barium 

metal and barium chloride, the positions of the metal and salt phases 

were reversed. 

The samples run at 900°C were divided into individual portions 

for the various analyses and placed in small screw top bottles for 

weighing. Due to the apparent separation of metal from the salt phase 
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on quenching samples from 950°C, as much of each phase as could be 

recovered was taken as the sample, dissolved in a volumetric flask, 

and aliquot s were taken for the individual analyses. 

c. Analysis The amount of metal dissolved in the salt phase 

was determined by dissolving a sample in distilled water and titrating 

with standard one tenth normal hydrochloric acid using phenolphthalein 

or methyl red as the indicator. The amount of chloride in the salt 

was determined gravimetricly by precipitating and weighing as silver 

chloride. The amount of calcium in the salt phase was calculated 

with the following equation derived from a material balance (see 

Appendix A): 

% Cl" + m - 100 " % Cl 

% Ga = 70» 914 ^ 137. 36 (equation 10) 

0.01767 

where was the moles of metal dissolved in 100 grams of sample. 

Barium was determined by difference. This method of analysis was 

used instead of analyzing directly for calcium and barium because 

the chloride analysis and base titration can be done with high precision 

and because of the difficulty of separating mixtures of calcium and 

barium over a wide concentration range. 

The amount of chloride in the metal phase was determined 

gravimetricly by precipitating and weighing as silver chloride. The 

amount of calcium and barium in the metal phase was determined by 
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precipitating calcium and barium sulfate in water with sulfuric acid 

and diluting with absolute methanol to a final concentration of 90 percent 

methanol by volume. The amount of calcium could then be calculated 

with the following equation (see Appendix B): 

wt. MSO, - I. 6993(100-% CI) 
% Ca = —- (equation 11) 

1.6974 

where wt. MSO^ was the weight of calcium and barium sulfates which 

would have been produced by a 100 gram sample of metal. Barium 

was determined by difference. By using this method, the calcium and 

barium did not have to be separated. 

The amount of calcium and barium was also determined by 

using equations derived from a material balance between the initial 

overall composition and the salt phase composition (see Appendix C). 

These equations are as follows: 

x 40. 08 x % Cl 

% Ca = (equation 12) 

nMCI2 
X 70,914 

NBa x 137.36 x % Cl" 

% Ba = N x 70.914 — (eqUati°n 13> 

MCI 2 

The sulfate method gave results which were consistently higher in 

barium than the material balance method and the difference in the two 

methods was independent of the starting materials. The primary source 
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of error in the material balance method was in transferring the 

weighed salt into the capsule. This error would change direction when 

calcium chloride was used in the charge rather than barium chloride 

and this change was not observed. Also, in the sulfate method, sam­

ples containing only barium metal and barium chloride gave a total 

analysis of about 100 percent while samples containing only calcium 

metal and calcium chloride gave a total analysis varying from 95 to 

98 percent. This error may be due to coprecipitation of calcium 

chloride with the calcium sulfate. For these reasons, the material 

balance method is considered to be the most accurate. 

2. Thermal analysis 

Phase boundaries in the ternary and the binary systems were 

located by differential thermal analysis. Thermal analyses were 

performed on samples contained in capsules made from 2§ inch 

lengths of Type 304 stainless steel tubing. A stainless steel cap 

containing a thermocouple well was welded on the top of the tube. A 

sectional view of this type of capsule is shown in Figure 3. The 

charge components were weighed in the same manner as the starting 

materials for the determination of the isothermal sections. The 

capsules would hold about 30 grams of barium chloride, 20 grams of 

of calcium chloride, 17 grams of barium metal, or 13 grams of 
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Figure 3. Thermal analysis capsule 
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calcium metal. After the capsule was charged in the dry box, the 

bottom of the capsule was pinched flat and sealed by welding in the dry 

box. 

The charged capsule was placed in the thermal analysis appara­

tus shown in. Figure 4. A Ho skins Type FHS304 resistance tube furnace 

was used to heat the samples. The furnace was closed at each end with 

a six inch long plug of K-30 fire brick. A ^ inch diameter hole was 

drilled in the center of the top plug to permit insertion of the sample 

thermocouple. Two concentric quartz liners were placed in the center 

of the furnace surrounding the sample capsule. The differential 

thermocouple was placed between these two liners and measured the 

furnace temperature. The leads of this thermocouple were brought 

out of the furnace between the bottom fire brick and the furnace liner. 

The cold junctions of these thermocouples were placed in glass tubes 

containing mercury in an ice bath. The E.M.F. from the sample 

thermocouple was recorded by the Xj channel of a Leeds and Northrop 

Speedomax Type G X^ - X^ recording potentiometer. The sample 

temperature was checked at all critical points with a Leeds and 

Northrop No. 8657-C manual potentiometer. The negative lead of the 

differential thermocouple was connected to the negative lead of the 

sample thermocouple. The E. M. F. between the differential thermo­

couple positive lead and the sample thermocouple positive lead was 



www.manaraa.com

THERMOCOUPLE TUBE 

FURNACE LINER 

HOSKINS TYPE FHS304 
FURNACE 

SAMPLE THERMOCOUPLE 

FURNACE WINDINGS 

QUARTZ 
LINERS 

K- 30 FIRE BRICK 

THERMOCOUPLE WELL 

SAMPLE CAPSULE 

COLD A 
230 VOLTS TO 
50/25 VOLTS 
TAPPED 
TRANSFORMER 

JUNCTION 

LEEDS AND NORTHROP 

X -  X  R E C O R D I N G  

LEEDS AND NORTHROP 

M A N U A L  

P O T E N  T l  0  M E  T  E  R  POTENT: 0 METER 

DIFFERENTIAL THERMOCOUPLE 
TO 220 VOLT 

L I N E  

DIFFERENTIAL THERMOCOUPLE 
AMPLE THERMOCOUPLE 

Xx> 
o 

Figure 4. Schematic drawing of thermal analysis furnace 



www.manaraa.com

31 

recorded by the channel of the Leeds and Northrop recorder. With 

this arrangement, the X^ recorder measured the difference in tempera­

ture between the furnace and the sample and was a very sensitive means 

for detecting thermal effects. The thermocouples were made from 22 

gauge chromel and alumel thermocouple wire. The sample thermo­

couple was standardized against a U, S. Bureau of Standards standard 

melting point aluminum sample and against a sample of coulometer 

grade silver. Graphite crucibles were used for the melting point 

standards. The crucibles were of the design recommended by the 

Bureau of Standards and reported by Roeser and Wen s el (32) except 

that a quartz thermocouple protection tube surrounded by a graphite 

tube was used instead of a glazed porcelain tube. Spectrographs 

analysis showed that no silicon was picked up by the aluminum during 

the standardization procedure. The thermocouple agreed within 

0. 5°C at both of these temperatures with the table for chromel-alumel 

thermocouples in the National Bureau of Standards Circular 561. 
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HI. RESULTS AND DISCUSSION 

A. Binary Systems 

1. Calcium-barium system 

The high temperature portion of the calcium-barium system 

consists of a continuous series of solid solutions and has a minimnm 

melting point at 605 °C and 49 mole percent barium. The phase 

diagram as. determined by Sheldon (27) is shown in Figure 5. No 

additional work was done on this system to check the reported results. 

2. Calcium-calcium chloride system 

The calcium-calcium chloride system contains a liquid immis-

cibility gap and is shown in Figure 6. The monotectic occurs at about 

99.5 atomic percent calcium and 820°C. The eutectic occurs at about 

2 atomic percent calcium and 768 "C. The eutectic and monotectic 

temperatures were determined by thermal analysis while the bound­

aries of the liquid immiscibility gap were determined by both thermal 

analysis and chemical analysis of quenched samples. The agreement 

between the two methods was excellent. The samples quenched from 

900 °C gave a value of 3. 8 mole percent for the solubility of calcium 

in calcium chloride and 1.02 mole percent for the solubility of calcium 
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chloride in calcium metal. A sample of calcium chloride which con­

tained a small amount of water gave about 20 mole percent calcium 

metal dissolved in calcium chloride due to the formation of calcium 

hydride and calcium oxide or hydroxide. The sample quenched from 

950 °C gave a value of 4« 2 mole percent for the solubility of calcium 

in calcium chloride and 1. 56 mole percent for the solubility of calcium 

chloride in calcium metal. 

Samples of calcium chloride containing 5.37, 97.4 and 98.8 

mole percent calcium metal were used for thermal analysis. The 

eutectic halt was well defined on both heating and cooling curves for 

5.37 percent sample. This sample supercooled about 25°C but after 

crystallization was initiated the temperature rose to a constant value 

of 768°C„ The eutectic break was not detectable on the 97.4 and 98.8 

percent calcium samples. This was probably due to small amount of 

salt present and to supercooling. The thermal effects due to the liquid 

immiscibility gap were only observed on the time-temperature differ­

ential cooling curves. This break was well defined for the sample 

containing 5. 37 percent calcium but was barely discernible for the 

samples containing 97.4 and 98.8 percent calcium. The cooling curve 

data are summarized in Table 6. This diagram is in good agreement 

with the eutectic and monotectic temperatures, i.e., 767°C and 825°G 

respectively reported by Eastman, et al., (17). The calcium side of 
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Table 6. Thermal analysis of calcium-calcium chloride 

Composition Immiscibility Monotectic Eutectic 
mole % Ca gap boundary horizontal horizontal 

°C °C °C 

5.37 1033 820 768 
97.4 1035 820 
98.8 921 820 

the immiscibility gap is also in good agreement with these authors. 

The solubility of solid and liquid calcium in liquid calcium chloride is 

in marked disagreement. The monotectic salt composition reported 

by Eastman, et al. (17), was 20 mole percent calcium as opposed to 

about 3 mole percent calcium found in this investigation,, The reported 

solubility then decreased to 15 mole percent calcium at 950 °C and 

increased to 30 mole percent calcium at 1200°C. This large solubility 

was possibly due to water or oxide contamination of the calcium or 

calcium chloride. Bredig, et ala, (33) reported a value of 6. 15 mole 

percent calcium metal dissolved in calcium chloride as determined by 

hydrogen evolution and 9. 75 mole percent calcium metal dissolved in 

calcium chloride as determined by hydroxide titration. These authors 

concluded that the probable reason for this discrepancy between methods 

was water or oxide contamination of their calcium chloride. 
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3. Barium-barium, chloride system 

The barium-barium chloride system contains a liquid immisci­

bility gap with the consolute point at I017°C. The eutectic horizontal 

occurred at 710 °C and about 2 mole percent barium. The monotectic 

horizontal occurred at 890°C and 15 mole percent barium. The phase 

diagram is shown in Figure 7. Except for the solubility of barium 

chloride in barium metal at 900 °C, this diagram was determined by 

thermal analysis. A sample containing 3 mole percent barium metal 

gave a thermal break at 946 °C corresponding to the liquidus. A well 

# defined break occurred between 919"C and 923°C which was interpreted 

as the barium chloride transformation. Several poorly defined breaks 

occurred between 926°C and 940°C which were probably due to one and 

two phase solid solution regions. The monotectic horizontal occurred 

at 890°C. The eutectic horizontal occurred at about 700°C and was 

very poorly defined. A sample containing 7 mole percent barium 

metal gave a break at 919°C with a larger break at 917°C. These 

breaks were interpreted as the liquidus and the - ̂ barium chloride 

transformation respectively. The eutectic break was very poorly 

defined and occurred around 700 °C. A sample containing 15 mole 

percent barium metal gave a thermal halt at 890 corresponding to 

the monotectic composition and temperature. Samples containing 19. 6, 

34. 0, 37.1, 50. 3, 70. 0 and 90. 0 mole percent barium metal gave well 
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Table 7. Thermal analysis of barium-barium chloride 

Composi­ Immisci­ Monotectic Eutectic Liquidus Transfor­
tion mole bility gap horizontal horizontal mation 
% Ba boundary 

3.0 890 ca 700 946 919-923 
7.0 890 ca 700 919 917 

15.0 890 890 707 890 
19.6 948 891 706 
34.0 999 890 711 
37.1 1005 890 713 
50.3 1017 890 713 
70.0 1003 890 710 
90.0 942 875 710 

defined breaks corresponding to the boundary of the liquid immiscibility 

gap, monotectic horizontal and eutectic horizontal. The 90 mole per­

cent monotectic horizontal was poorly defined due to the small amount 

of barium chloride in this sample „ The results are summarized in 

Table 7. 

The analysis of a sample of barium chloride and crude barium 

quenched from 900°C gave 20 mole percent barium dissolved in barium 

chloride and 5. 2 mole percent barium chloride dissolved in the barium 

metal. This high solubility of barium metal in barium chloride was 

probably due to impurities such as barium oxide and nitride in the 

barium metal. Since work on the ternary isothermal sections indicated 
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that the impurities in the crude barium had a negligible effect on the 

solubility of the salt in the metal, the value of 5. 2 mole percent as 

the solubility of barium chloride in barium was accepted as being valid» 

A sample quenched from 950 °C showed poor phase separation and it 

was not possible to determine the solubilities at this temperature by 

chemical analysis. At both 900°C and 950°C the density of the metal 

phase was greater than that of the salt phase. The diagram is in good 

agreement with the diagram reported by Schafer (34). The monotectic 

temperature and the consolute point reported by Schafer were 880 °C 

and I010°C respectively compared to 890°C and 1017 °C found by this 

investigation. This diagram is in marked disagreement with the 

diagram reported by Eastman, et al. (17), These authors reported 

the monotectic to be at 840 "C and 40 mole percent barium. The solu­

bility of barium in barium chloride at 1000°C was given as 30 mole 

percent. The density of the metal phase was reported to be less than 

that of the salt phase. 

4. Barium chloride-calcium chloride system 

The barium chloride-calcium chloride system consists of an 

incongruently melting compound BaCl^" CaCl^ and an eutectic at 595 °C 

and about 37 mole percent barium chloride. The phase diagram is 

shown in Figure 8. It v/as taken from Bukhalova and Bergman (16) and 
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was modified in that the reported congruently melting compound was 

changed to an incongruently melting compound and the °< - transfor­

mation of barium chloride was added. A sample of barium chloride 

containing 5 mole percent calcium chloride gave a thermal break at 

933C,C, an isothermal halt at 912°C, and another break at 625°C. 

These breaks were interpreted as the liquidus, - /& transformation 

and the peritectic horizontal. A sample of barium chloride containing 

10 mole percent calcium chloride gave thermal breaks at 903 "C and 

625°G corresponding to the liquidus and the peritectic horizontal. A 

sample of barium chloride containing 20 mole percent calcium chloride 

gave breaks at 868°C, 625°C, and 595°C. When this sample was cooled 

from 900*0 to 615"C and held at the latter temperature for 10 hours, 

the 595° break was not observed on subsequent cooling and heating but 

did occur again after heating above 625°C. These data were interpreted 

as evidence for the peritectic reaction: 

BaCl2 solid + melt ^ ^ BaClg" CaClg . 

On fast cooling, the compound formed around the barium chloride 

crystals and prevented the reaction from going to completion. The 

excess melt, being richer in calcium chloride, then gave the eutectic 

break on further cooling. When the sample was annealed at 615°C, 

the melt diffused through the compound and reacted completely with 

the solid barium chloride. The data reported by other investigators 
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Table 8. Compound and eutectic in the calcium chloride-barium 
chloride system 

Investigator Compound Eutectic 

This investigation Peritectic 625 °C 595°C 
Ruff and Plato (21) None 590 °C and 37% BaCl2 

Sato and Amano (18) None 617°C and 46% BaCl2 

Sandonnini (14) None 595°C and 38% BaCl2 

Alabyshev and Lantratov (35) None Not reported 
Budinkov, et al. (36) Peritectic 632 °C 605°C and 35% BaCl2 

Bukhalova and Bergman (16) Congruent 629 °C 594°C and 36.5% BaCl 
624°C and 54% BaCl2 

is summarized in Table 8. 

B. Ternary System 

1. The isothermal section at 900°C 

The isothermal section was determined by analyzing the metal 

and salt phases from samples quenched from 900°C. One series of 

determinations was made at this temperature using calcium metal 

and barium chloride as the starting materials while another series 

was made with the crude barium and calcium chloride as the starting 

materials. Good agreement was obtained between the two series on 

the solubility of the salt in the metal phase. The solubility of the metal 
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in the salt phase for the series prepared from barium metal and 

calcium chloride was about twice as great as the solubility obtained 

for the calcium-barium chloride series. In attempting to find the 

reason for this discrepancy, it was found by thermal analysis that the 

barium-barium chloride monotectic temperature rose above 900°C as 

the composition moved into the ternary system. As a result, two 

three phase regions consisting of solid barium chloride, liquid metal, 

and liquid salt must exist in this isothermal section. The composition 

of each of these phases must remain constant in this region since from 

the phase rule at constant temperature, three phases present in a three 

component system have zero degrees of freedom. A two phase region 

consisting of liquid metal and solid chloride lies between these two 

three phase regions. Thermal analysis also showed that the solubility 

found by the calcium-barium chloride series was of the correct mag-

netude. Since the crude barium calcium chloride samples undoubtedly 

had a larger impurity content and the solubility of the metal in the 

salt phase was twice that found by thermal analysis, the results of this 

series were considered incorrect. The increased solubility was 

probably due to oxygen, nitrogen, and carbon impurities in the crude 

barium because it was not observed when distilled barium used for 

thermal analysis and determination of the 950°C isothermal section. 

The metal phase boundary is probably correct since a good check was 
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obtained over the region covered by both series of experiments. The 

calcium-barium chloride series covered a limited range of composi­

tions because it is fixed on one side by a three phase region and on 

the other side by the high metal to salt ratio needed to obtain some 

compositions. The analytical data and the concentration quotients 

defined by: 

C ~ M M (equation 14) 
B^m 

where N~ and are the mole fractions of calcium and barium 
m m 

in the metal phase and Nça and N^a are the mole fractions of 

calcium and barium in the salt phase, are listed in Table 9. The 

isothermal section as determined by this data is shown in Figure 9. 

The dashed lines refer to the barium-calcium chloride data, the 

dotted lines are the estimated boundaries of the three phase regions, 

and the solid lines represent the calcium-barium chloride data. 

2. The isothermal section at 950*C 

The isothermal section was determined by analyzing the metal 

and salt phases of samples quenched from 950°C. Only two deter­

minations were made with calcium metal and barium chloride as the 

starting materials because of the extremely high or low ratios of 

starting material needed to cover a very wide concentration range. 
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Table 9. Analytical data and concentration quotients at 900 °C 

Starting materials (grams) Salt phase Metal phase 

Ca Ba CaCl_ BaCl., % CI mole metal N_ N , % Cl N_ N 
2 2 Ba metal Ba MCI 

&ram. s m 2 
x 104 

20. 727 5. 403 29.49 10. 17 0. 985 . 196 2. 86 0. 690 0. 044 27. 1 
19. 639 6. 433 30.16 8. 99 0. 977 . 174 1. 82 0. 594 0. 025 30. 7 
5. 973 2. 995 31.47 7. 24 0. 951 .139 0. 90 0. 367 0. 01 35. 3 
5. 144 3. 536 32.85 5. 13 0. 928 .010 0. 79 0. 159 0. 0064 66. 4 
9. 306 8. 579 35.96 4. 03 0. 787 .0736 0. 69 0. 0318 0. 0043 108. 0 
6. 479 10. 418 43.83 3. 93 0. 490 .060 1. 09 0. 0022 0. 0064 483. 0 

2. 430 19. 213 34.59 1. 64 0. 920 .0326 0. 84 0. 081 0. 0056 129. 0 
2. 954 18. 050 34.85 1. 67 0. 905 .0329 0. 53 0. 081 0. 0036 107. 0 
4. 063 16.  840 35.05 1. 60 0. 896 .0314 0. 58 0. 063 0. 0038 133. 0 
4. 238 17. 483 35.04 2. 02 0. 887 .0393 0. 64 0. 063 0. 0042 117. 0 
5. 188 19. 270 35.45 I. 78 0. 884 .0369 0. 575 0. 063 0. 0038 113. 0 

10. 899 18. 294 35.99 1. 44 0. 849 .0276 0. 688 0. 044 0. 0044 122. 0 
11 . 698 12. 597 36. 22 3. 36 0. 789 .0615 0. 773 0. 038 0. 0048 94. 7 
11. 192 6. 327 37.40 1. 96 0. 763 .0358 0. 825 0. 027 0. 005 116. 0 
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The other samples were prepared from double distilled barium metal 

and calcium chloride. Excellent agreement was obtained between the 

two sets of data. The concentration quotient was approximately con­

stant with an average value of 82. 3 up to about 90 mole percent barium 

in the salt phase. Between 90 and 99 mole percent barium in the salt 

phase, the solubility of the metal phase in the salt phase increased 

rapidly and the concentration quotient decreased from about 82. 3 at 

90 mole percent to 15.1 at 99 mole percent barium in the salt phase. 

This decrease in the concentration quotient was attributed to the high 

solubility of the metal phase in the salt phase. The analytical data 

and the concentration quotients are presented in Table 10. A com­

parison of the two methods for analyzing the metal phase is shown in 

Table 11. The fractional estimated standard deviation, defined as: 

# < C i " C ) 2  
I n - 1 Q — 1 .LI - J. X 100 û - (equation 15) 

C 

where n is the number of samples, is the ith value of the concen­

tration quotient and C is the average value of the concentration quo­

tient, was calculated for both methods for sample with less than 90 

mole percent barium in the salt phase. For the sulfate method, the 

fractional estimated standard deviation was 14.6 percent while for 

the material balance method, the fractional estimated standard devia­

tion was 5.0. This shows that the material balance method is more 
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Table 10. Analytical data and concentration quotients at 950°C 

Starting materials (grams) Salt phase Metal phase C 

Ca Ba CaCl2 BaCl2 % CI mole metal Nfi 
NMetal % cl2 NBa NMC1, 

16.233 2. 006 27. 28 14.82 0.990 0.278 4.53 0.856 0.082 15.1 

14.946 4. 888 30. 88 7.36 0.983 0.145 1.87 0.588 0.027 40.5 

14.078 7. 421 32. 17 5.31 0.964 0.105 1.51 0.335 0.016 53.2 

2.731 17. 920 34. 80 2.12 0.895 0.041 1.0 0.096 0.0071 80.3 

7.002 5. 956 35. 52 2.20 0.885 0.042 1.0 0.070 0.0067 78.4 

4.934 9. 925 35. 85 2.06 0.841 0.039 1.05 0.056 0.0068 89.1 

4.842 6. 037 40. 45 2.68 0.613 0.045 2.06 0.019 0.012 81.6 

6.909 11. 946 44. 94 1.97 0.454 0.030 1.61 0.010 0.009 82.3 

3.016 11. 806 53. 28 3.12 0. 201 0.040 2. 21 ca 
0.003 

ca 
0.012 

ca 
84.0 
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Table 11. Comparison of metal phase analyses 

Salt phase 

N 
Ba. 

N 
(OH)-

Metal phase 
Sulfate method 

N. 
Ba N 

MCI. 

Metal phase 
Material balance method 

N. Ba m 
N. 

MCI-

0.990 

0.983 

0.964 

0.895 

0.885 

0.841 

0.613 

0.454 

0.278 

0.145 

0.105 

0.041 

0.042 

0.039 

0.045 

0.030 

0.886 

0.616 

0.354 

0.108 

0.0855 

0.0657 

0.00942 

0.085 

0.027 

0.016 

0.0072 

0.0069 

0.0070 

0.0095 

C = 73.3 

S = 14.6 

13.6 

36.8 

48.2 

71.9 

63.1 

71.2 

8 6 . 8  

0.856 
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precise. 

The isothermal section as determined by these data is shown 

in Figure 10. The solubility of the salt phase in the metal phase gave 

a smooth curve with a slight minimum at about 10 atomic percent 

barium. The solubility of the metal phase in the salt phase also showed 

a minimum which occurred at about 50 mole percent barium in the 

salt. The point at 61. 3 mole percent barium was determined with 

barium metal which had been exposed to the atmosphere of the dry box 

several times and possibly had become contaminated by water vapor 

causing the higher solubility. The observed solubility of metal phase 

in the salt at 99 mole percent barium in the salt phase was about 11 

mole percent higher than that predicted by the solubility curve. This 

error probably due to two causes. In all of the ternary samples, the 

metal phase was less dense than the salt phase but in the barium-

barium chloride binary system the metal phase was more dense than 

the salt phase. Therefore somewhere in the region around 99 mole 

percent barium in the salt phase, the density of the two phases must 

be equal and it would be impossible to separate the two phases. The 

other cause of this high solubility was the high metal to salt ratio 

needed to reach this composition. The small amount of oxygen, 

nitrogen and water in the barium metal would be appreciable compared 

to the small amount of salt. The two phase solid barium chloride + 
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liquid salt region was estimated from the barium chloride-barium 

and barium chloride-calcium chloride binary systems. 

3. Prediction of ternary solubility of metal in the salt phase 

In this type of ternary metathetical system at temperatures 

where a liquid salt and liquid metal phase exist, the phases in equilib­

rium can be shown as tie-lines in an isothermal section. For systems 

in which the solubility of the metal phase in the salt phase and the solu­

bility of the salt phase in the metal phase is negligible, the data may 

be presented as an equation giving the concentration quotient as a func­

tion of the concentration of one of the species. If one of the solubilities 

is not negligible, a means must be provided to calculate this solubility 

in order to analytically describe the isothermal section. For this 

system, the solubility of metal in the salt phase was not negligible. 

In order to find an equation which would predict this solubility, several 

hypotheses as to how the metal dissolved or existed in the salt phase 

were considered. Solubility curves were calculated and compared with 

the experimental curve to see which model would best explain the ob­

served variation of solubility with composition. 

The hypotheses used to calculate the solubility of the metal 

phase in the salt phase imply that the salt phase can be considered to 

be composed of individual species of calcium, barium, barium chloride 
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and calcium chloride. The observed concentration quotients can be 

corrected for the amount of dissolved calcium and barium metal by 

subtracting the calculated amount of each metal from the total amount 

of that element in the salt phase. The calculated equilibrium con­

stants were then compared to see which set was most nearly inde­

pendent of concentration. 

The following assumptions were common to all of the models. 

(1) Calcium metal and barium metal form an ideal solution with each 

other. This assumption was probably valid as the two metals are quite 

similar and form a continuous series of solid solutions. (2) Calcium 

chloride and barium chloride form an ideal binary solution. This 

assumption is probably good because the intermolecular forces should 

be weak since only an incongruent intermolecular compound is formed 

which decomposes about 350 °C below the operating temperature. Also, 

Rinck's work (10) indicates that sodium and potassium halides probably 

form ideal solutions. (3) The salt that dissolves in the metal obeys 

Henry's law. This assumption implies that the activity of the metal 

in metal phase is equal to the mole fraction. The results would not be 

appreciably changed if this were not true since the salt solubility was 

less than two percent for most of these compositions. 

The first model was based on the assumption that monochloride 

monomers were formed as follows : 
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Ca + CaCl^==2 CaCl (equation 15) 

Ba + BaClg BaCl (equation 16) 

It was also assumed that these monochlorides form ideal solutions 

with the salt phase and obey Henry's law in the metal phase in both 

the binary and ternary systems. The equilibrium constants for the 

formation of the monochlorides can be calculated from the binary 

solubilities with the following equations; 

N2 

CaCl 
kCaCl " (equation 17) 

and 

NCaNCaCl2 

N2 

BaCl 

Bad (equation 18) 

Since 

and 

^Bag ^BaCl^ + ^BaCl (equation 19) 

N = N + N 
Cag CaCl2 CaCl (equation 20) 

These equations may be combined with equations 17 and 18 to give the 

concentrations of calcium chloride and barium chloride as follows: 

kCaClNCa , / „ , , kCaCINCa ,2 
NCaCl2 " "Ca, + - V NCa NCakCaCl + < 2 > 

2 , — s 

(equation 21) 
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«„0h • 

(equation 22) 

These values of and may be used in equation 6 to 

calculate the reaction equilibrium constants. Substituting values of 

the solubility from the binary systems into equations 17 and 18 gave 

the following values of the equilibrium constants for the monochlorides. 

-3 
k = 7.95x10 

CaCl 

kBaCl = °'395 

By using a value of the equlibrium constant calculated from the tie-

line at 89.5 mole percent barium in the salt, the composition of the 

salt phase for various metal phase compositions was calculated and 

the curve obtained was compared with the experimental curve. Due 

to the complexity of equations 21 and 22, the composition of the salt 

phase was determined by successive approximations. The calculated 

curve is shown in Figure 11. Since this model predicted solubilities 

in the salt as much as four times greated than the observed solubilities, 

the equilibrium constants were not calculated. 

The second model was based on the assumption that monochloride 

dimers were formed as follows: 
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Ca + CaCl2 v~^ (CaCl)2 (equation 23) 

and 
BaCl2 v (BaCl)2 (equation 24) 

The equilibrium constants for formation of the monochlorides were 

calculated from the binary solubilities with the following equations. 

N(CaCl)2 

k(CaCl)2 = NcaNCaC1 
25) 

and 
N(BaCl)2 , 

kfBaCl>? = — (equation 26). 

^ ^ %a^BaCl, 

Smce NBas 
= NBaCl2 

+ 2 N(BaCl)2 (equation 27) 

NCas 
= NBaCl2 

+ 2 N(CaCl)? (equation 28) 
and 

these equations may be combined with equations 25 and 26 to give.: 

Nr ri = (equation 29) 
CaC12 1 + 2 k(CaCl)2 NCa 

and ^Ba "s 

<"(BaCl)2 "Ba 
NBaCl2 = x + 2 k. , N (equation 30). 

Substituting the equations for ^ and into equation 6, the 

following equation for the reaction equilibrium constant was obtained: 

NCa NBas (l + 2k(CaCl)2
NCa\ 

K  =  N B a X ^  I' +  2 W > 2 N J <e" 
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Table 12. Corrected reaction equilibrium constants 

Concentration Model 2 Model 3 Model 4 Model 5 
quotients 

87.9 
77.6 
82.9 
67.8 
76.7 
53.2 
40.5 

9 6 . 1  
83.4 
85.4 
68.4 
76.0 
44.3 
27.6 597 

92.9 
85.9 
99.2 
82.7 
9 8 . 8  

220 

91.4 
8 0 . 6  
85.0 
6 9 . 0  
77.4 
49.7 
35.6 

92.5 
8  2 .6  
93.2 
76.5 
89. 6 
71.4 
65.1 

The equilibrium constants for formation of calcium and barium 

monochlorides were 0.0473 and 0.470 respectively. 

Using the value of K obtained from the tie-line at 89. 5 mole 

percent barium in the salt phase and arbitrary values of Nga, the 

compositions of the salt phase were calculated and the resulting curve 

is shown in Figure 11. The corrected equilibrium constants are 

shown in Table 12. 

Model 3 was based on the assumption that the calcium and 

barium dissolved in the salt phase according to Henry's law, i^e. 

(equation 32) 

and 

(equation 33) 
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where N_ . and N are the mole fractions of metallic calcium and 
Ca* Ba" 

s s 

barium dissolved in the salt. The Henry's law constants were calculated 

from the respective binary solubilities as follows: 

Nca° 
k. = 1_ = 0.0427 

NCa 

and 
Nsa; 

k-, = ! = 0.237. 
NBa 

Since NBa = Ng + N (equation 34) 
s es 

and 

Ca
S = NcaG12 + N(3as (equation 35), 

* CaCl2 = NCas " Vca (equation 36) 

These equations were combined with equations 32 and 33 to give: 

N, 

and 

NBaCl2 
= NBas ~ k2NBa (equation 37). 

Combining equations 36 and 37 with equation 6 gives: 

r 
Ca 

N <NBa_ ' k2NBa) 

K=NBa >CS-¥cal (equation 38). 

From this equation, corrected equilibrium constants could be calculated. 

Using the value of K obtained from the tie-line at 89.5 mole percent 

barium in the salt phase, the solubility curve was calculated and is 
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shown in Figure 11. Since this model predicted higher solubilities 

than were observed, the concentrations quotients were corrected by 

modifying this model to use the observed solubilities. It was assumed 

that the ratio of calcium metal to barium metal dissolved in the salt 

phase was equal to the ratio of these metals in the metal phase multi­

plied by the ratio of the Henry1 s law constants, i.e., : 

NCa| _ *1 NCa 

TSJ ~ k W, ) (equation 39). 
Ba" 2 Ba 

S 

Since 

NM° = NCa° + NBa° (equation 40) 
s s s 

where is the total metal dissolved in the salt phase, the values 

of Nçao and 0 were calculated and substituted into equations 34 and 

35 to give and . These values were used with equation 6 

to calculate the corrected equilibrium constants shown in Table 12. 

The fourth model was a modified Henry's law. It was assumed 

that calcium metal only dissolved in calcium chloride and barium 

metal dissolved in barium chloride. The amounts of each metal dis­

solved were given by the following equations: 

NCa| = ki' NCaNCaCl2 M^ion 41) 

and 
%ag = ^2^Ba%aCl2 (equation 42). 
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Equations 41 and 42 were combined with equations 34 and 35 to give: 

n=*s 

NCaCl2 
= i + % NCa (equation 43, 

and 

M NBaCl2 
= 1 + k. NBa (equation 44). 

These equations were substituted into equation 6 to give: 

N Ca NBa 1 + H NCa 

K = NBa ^ 

The Henry's law constants were as follows: 

k'L = 0.0445 

kj> = 0.30 

The values of the corrected reaction equilibrium constants are listed 

in Table 12, By using the value of K obtained from the tie-line at 

89. 5 mole percent barium, the solubility curve was calculated and is 

shown in Figure 11. 

Since model 3 gave equilibrium constants which increased at 

high barium compositions while model 4 gave corrected equilibrium 

constants which decreased even more than the observed concentration 

quotients an intermediate Henry's law model was tried. It was assumed 

in this model that barium dissolved according to model 3 and calcium 

dissolved according to the following equation: 
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NCa°s = kl NCa (NCaCl2 
+ a NBaCl2> («l^ion 46) 

where a was an empirical constant which was adjusted to give the 

correct solubility at one point on the solubility curve. A value of 

a = 0.4 gave the correct solubility at 89.5 mole percent barium in the 

salt phase. The corrected equilibrium constants are listed in Table 12 

and the solubility curve is shown in Figure 11. 

A comparison of the curves in Figure 11 shows that the mono-

chloride monomer, model 1, predicted much higher solubilities than 

were observed and this model was discarded. The monochloride 

dimer, model 2, gave a good qualitative fit to the experimental solubility 

curve. The major weakness of this model was that the resulting equilib­

rium constants decreased even more than the observed concentration 

quotients. Since the monochloride monomers gave too high a solubility 

while the dimer s gave a low solubility, another model is possible 

which assumes an equilibrium between the dimer and monomer species. 

However, it is not possible to evaluate the two equilibrium constants 

for the formation of both monomer and dimer monochlorides from one 

binary system and this model was not used. 

The simple Henry's law, model 3, gave a fair estimate of the 

solubility but it was qualitatively incorrect in that the predicted 

solubility did not decrease below the value for the calcium-calcium 

chloride binary. The second Henry's law, model 4, gave the correct 
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shape for the curve but predicted a lower solubility than was observed. 

The corrected equilibrium constants also decreased more than the 

experimental concentration quotients, The combined Henry's law, 

model 5, gave the best fit to the solubility curve and the most nearly 

constant equilibrium constants. However, since it contained an adjust­

able constant, a better agreement with the experimental data would be 

expected. 

These calculations show that the isothermal sections can be 

described approximately in this system by assuming that the salt and 

metal phases obey the ideal law of mass action and that the two metals 

dissolve independently in the salt. The solubility behavior indicates 

that calcium interacts more strongly with calcium chloride than with 

barium chloride. No difference between the interaction of barium 

chloride and calcium chloride with barium could be detected due to 

the extent of the equilibrium reaction. The state of the dissolved 

metal in the salt phase can not be deduced from the solubility data. 

4. Standard free energy and enthalpy change for the reaction of barium 
with calcium chloride 

From a knowledge of the equilibrium constant at two temper­

atures, the standard free energy change at both temperatures and the 

enthalpy change of the reaction may be calculated with equations 3 and 

5 respectively. If it is assumed that the equilibrium constant is equal 
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to the concentration quotient in the region of low solubility, the free 

energy may be calculated. This assumption is probably good since in 

this region, all of the solubility models except the monochloride 

monomers gave about the same value for the equilibrium constant as 

the concentration quotient. The calcium-barium chloride data at 900°C 

-j-

gave an average equilibrium of 116. 5 _ 10 with the corresponding free 

energy change equal to -11.1 k cal. Using only the data up to 90 mole 

percent barium in the salt phase, the average value of the equilibrium 

constant at 950°C is equal to 82. 3 ^ 4.1 and the corresponding value 

of the free energy change is -10. 7 k cal. From these values of the 

equilibrium constant, the enthalpy change of the reaction was calcu­

lated to be -19.9 k cal per gram atom of metal. The standard state 

of all components is the pure liquid. 

These values of the equilibrium constant free energy change, 

and enthalpy change are compared with values computed from compiled 

thermodynamic data in the literature in Table 13. The variation in the 

computed values of the standard free energy of the reactions is due to 

different estimates of the standard entropy of barium chloride at 25°C 

and of the heats of transition of the pure metals and salts. 
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Table 13. AF, ûH, and K for the reaction of barium with calcium 
chloride 

Investigator K AF(k cal) ûH(k cal) 
900°C 950°C 900°C 950°C 

This investigation 116.5 82.3 -11.1 -10.7 -19.9 
Brewer,,et al. (37) 38.2 30.2 - 8.5 - 8.3 -16.6 
Glassner (38) 73.0 50.9 -10.0 - 9.6 -19.0 
Villa (39) 273 201 -13.0 -12.9 -15.4 

5. Polythermal ternary projection 

One method of showing a three dimensional temperature-

composition ternary system in two dimensions is a polythermal pro­

jection. In this projection, the intersections of the various surfaces 

are drawn in the composition plane with arrows indicating the direction 

of composition change with decreasing temperature. The polythermal 

projection of the calcium-barium-barium chloride-calcium chloride 

system is shown in Figure 12. In the barium chloride corner of the 

projection, a curve extends from 6.6 mole percent calcium chloride 

on the calcium chloride-barium chloride system to 7. 0 mole percent 

barium on the barium-barium chloride system representing the 

intersection of the °C barium chloride liquidus surface with the 

barium chloride liquidus surface. This curve contains a maximum at 
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about 928°C and 1.5 mole percent calcium and 1.5 mole percent 

metal. The curve then drops to 9I8°C on the barium-barium chloride 

binary and 912°C on the calcium chloride-barium chloride binary. 

Since the - /& transformation was lowered on both binaries, the 

solubility of barium metal and of calcium chloride must lower in the 

low temperature K barium chloride than in the high temperature /& 

barium chloride. Since the transformation is raised in the ternary 

system, the relative solubility seems to be reversed so that the 

solubility in is greater than in ̂  . 

The monotectic curve is produced by the intersection of the 

salt liquidus surface with the two liquid surface. This curve starts 

at 890°C and 15 mole percent barium on the barium-barium chloride 

binary and rises to 915°C at about 5 mole percent metal and 5 mole 

percent calcium in the ternary system. The curve decreases to 895aC 

at 2. 8 mole percent metal and 11.5 mole percent calcium. The curve 

is then estimated down to the ternary eutectic point at 593°C and about 

1. 6 mole percent metal and 63 mole percent calcium. The eutectic 

line is estimated up to the calcium-calcium chloride eutectic. The 

900 °C isothermal boundary of the liquid salt and 2 liquid regions shows 

how it intersects the monotectic to produce the solid salt region. The 

boundaries of this solid region also indicate the general direction of 
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the tie-lines in the 900°C and 950°C isotherms. The 900° and 950° 

boundaries of the immiscibility gap are also shown. 
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It. SUMMARY 

The reaction of barium with calcium chloride was investigated 

by determining the calcium-barium-barium chloride-calcium chloride 

ternary system. Isothermal sections at 900° and 950° were deter­

mined by heating mixtures of calcium metal and barium chloride or 

barium metal and calcium chloride in capsules of 309 stainless steel, 

quenching in cold water and analyzing the metal and salt phases. The 

results were reported as isothermal tie-lines and as concentration 

quotients in which total calcium and barium concentrations in each 

phase were used. The concentration quotient was nearly independent 

of concentration between 0 and 90 mole percent barium in the salt 

phase with values of 116.5 and 82. 3 at 900°C and at 950°C respectively 

in this region. Between 90 and 100 mole percent barium in the salt 

phase, the solubility of the metal in the salt increased rapidly and the 

concentration quotient at 950°C decreased to 40. 5 at 98. 5 mole percent 

barium chloride. At 950 "C, the solubility of the salt in the metal 

phase decreased from 1. 56 mole percent for pure calcium to 0.7 mole 

percent at 10 mole percent barium in the metal phase. The solubility 

then increased to 2. 5 mole percent at 60 mole percent barium in the 

metal phase and 11.5 mole percent for pure barium. The solubility 

of metal in the salt was 4. 2 mole percent for pure calcium chloride, 
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decreased to 3 mole percent for 45 mole percent barium in the salt 

phase, increased to 4. 2 mole percent for 90 mole percent barium and 

then increased to 21 mole percent for pure barium chloride. The 

experimental solubility of metal in the salt phase was compared with 

solubilities calculated by assuming that the two metals and the two 

salts form ideal solutions and making various assumptions as to how 

the metal dissolved in the liquid salt. Five models were considered; 

(1) monochloride monomers, (2) monochloride dimer s, (3) the metal 

dissolved according to Henry's law, i.e., mole fraction of metal A 

dissolved in the salt is equal to a constant times the mole fraction of 

metal A in the metal phase, (4) the concentration of metal A dissolved 

in the salt phase was equal to a constant times the product of the mole 

fraction of metal A in the metal phase and the mole fraction of salt 

A CI2 in the salt phase, and (5) the barium metal dissolved according 

to model 3 and the mole fraction of calcium dissolved in the salt was 

equal to a constant times the product of the mole fraction of calcium 

in the metal phase and the sum of the mole fraction of calcium chloride 

plus an arbitrary constant times the mole fraction of barium chloride. 

This arbitrary constant was evaluated from one point on the ternary 

solubility curve. The equilibrium constant for the formation of the 

monochlorides and the Henry's law constants were calculated from the 

binary solubilities. Model 1 predicted solubilities as much as a factor 
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of four greater than the observed solubility and was discarded. Models 

2 and 4 gave good qualitative agreement with 2 being slightly better 

than 4. These models predicted lower solubilities than were observed. 

Model 3 gave fair agreement but overestimated the solubility by about 

50 percent. The major weakness of this model was that the calculated 

solubility was never less than the solubility of calcium in calcium 

chloride. Model 5 gave good agreement with the observed solubility. 

These models were used to correct the apparent equilibrium constant 

for solubility of metal in the salt. Models 2 and 4 were of such a form 

that the correction further decreased the equilibrium constant in the 

region of 90 to 99 mole percent barium chloride. By modifying model 

3 so that the observed solubility of metal could be used, the equilibrium 

constant was over-corrected in the region of 90 to 99 mole percent 

barium chloride. Model 5 gave a fairly constant equilibrium constant. 

Thermal analysis was used to determine phase boundaries of 

the ternary system and to check the reported binary phase diagrams. 

In the barium-barium chloride system, the <=<, - transformation was 

lowered from 926° for pure barium chloride to 920°C, the consolute 

point was at 1017 °C and 50 mole percent barium, the monotectic was 

at 890°C and 15 mole percent barium, and the eutectic was at 712°C 

„.-y  

and about 96 mole percent barium. In the calcium-calcium chloride 

system, the monotectic occurred at 820°C and more thàn 99 mole per­
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cent calcium. The eutectic occurred at 768°C and less than two mole 

percent calcium. The boundaries of the liquid immiscibility gap rose 

very steeply to values of 5 and 97. 5 mole percent calcium at 1025°C. 

In the barium chloride-calcium chloride system the eutectic occurred 

at 595°C and 37 mole percent barium chloride, the * - ^transforma­

tion was lowered to 9I0°C and the compound CaC^'BaClg had an 

incongruent melting point at 625 °C. 

In the ternary system, the pC - /ff transformation in barium 

chloride was raised from 920°C and 910 °C in the binaries to 928°C at 

1. 5 mole percent calcium and 1. 5 mole percent metal. The mono­

tectic was raised from 890 °C at 15 mole percent barium in the barium-

barium chloride binary to 914°C at 5 mole percent calcium and 5 mole 

percent metal. It then drops to 895°C at 11.5 mole percent calcium 

and 2.5 mole percent metal. The ternary eutectic was at 593 °C and 

about 1. 65 mole percent metal and 37 mole percent calcium chloride. 

Assuming that the concentration quotient was equal to the 

equilibrium constant in the region of low solubility, ù F ° for the 

reaction was equal to -11.1 and -10.7 k cal at 900°C and 950°C 

respectively. From these values of iF°, A H° was calculated to 

be -19.9 k cal. 
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Appendix A. Derivation of equation 10 

The amount of calcium in the salt phase was calculated from 

the chloride analysis and the amount of metal dissolved in the salt 

with equation 10. This equation was derived as follows: 

% Ca + % Ba = 100 - % CI 

moles Ca + moles Ba = moles salt + moles metal 

or 

% Ca + %Ba = % Cl + 

40.08 137.36 70.914 M 

where is the number of moles of metal dissolved in an 100 gram 

sample. 

WW 
% Ba = 137. 36 \ nn A J + M

M " % Ca/40.08 

Substituting into the first equation gives 

% Ca Ca + 137-36 + MM • 100 - % 01 

% ca - 100 - % C1 - (7|Sf4) + MM 

1 - 137.36/40.08 

% G 1  +  M _ 100 - % Cl 
^ _ 70.914 M 137.36 
% Ca = 137.36 - 40.08 

40.08 xx137.36 
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% Cl + M - 100 - % Cl 

70.914 M 137., 36 (equation 10) 

.01767 



www.manaraa.com

82 

Appendix B . Derivation of equation 11 

The amount of calcium in the metal phase was determined by 

means of equation 11 from the chloride analysis and the total calcium 

and barium content. The total calcium and barium content was 

measured by a gravimetric determination of the combined sulfate 

precipitate. This equation was derived as follows: 

% Ca + % Ba = 100 - % CI 

% ca x CaS°4 + % Ba x °f metal sulfates in 
Qa ga a 100 gram sample. 

or 3.3967 % Ca + 1. 6993 % Ba = wt. M SO^ 

Since % Ba = 100 - % CI - % Ca, 

3.3967% Ca + (100 - % CI-% Ca} x 1.6993 = wt. M S04 

(3.3967 - 1.6993) % Ca = wt. M SO^ - 1.6993 (100 - % CI) 

wt. M S04 - 1.6993 (100 - % CI) 
% Ca = — (equation 11) 

1.6974 
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Appendix C. Derivation of equations 12 and 13 

The amount of calcium and barium in the metal phase was also 

determined by using equations 12 and 13 with a material balance 

between the initial overall composition and the salt phase composition. 

These equations were derived as follows : 

% C1/70.9I4 
N 

MCI 2 moles MCl^ + moles metal 

% Ca/40.08 
N Ca moles Ca + moles Ba 

Since moles MCl^ + moles metal = moles Ca + moles Ba, 

% Ca _ % CI 

NCax  4 0 - 0 8  7 0 - 9 1 4 X N M C 12  

NCa x 40.08 x % CI 
% Ca = ——— (equation 12) 

70.914xNMd2 

also % Ba/137.36 
N. 

and 

moles Ca + moles Ba 

% Ba % CI 

N^x 137.36 70.914xN^ 
2 

Nr. x 137.36 x % CI 
% Ba : (equation 13) 

70.914xNmc1 
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These two equations require the knowledge of N-ga and Nça 

as a function of N . This was obtained by drawing a tie-line on 
2 

the ternary diagram from the salt composition through the initial 

overall composition to the calcium-barium binary boundary. 

and N- could be determined from this line for any value of N_,__ , 
ua MCI 2 

Equations 12 and 13 were solved with different values of 

with the corresponding values of and N^a until the calculated 

analysis of the metal phase was successively approximated to be 100 

percent. These values of calcium and barium were then taken as the 

composition of the metal phase. 
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